Konkrete Mathematik Aufgabenblatt 2

Besprechung: Dienstag, 18. Juni 2019

1. Inverse in Monoiden

Zeigen Sie:

- a) In einem endlichen Monoid M gilt $st = 1 \implies ts = 1$ für alle $s, t \in M$.
- b) Für unendliche Monoide ist diese Aussage im Allgemeinen falsch.
- **2.** Let S be a finite semigroup. Recall that an element $e \in S$ is *idempotent* if it satisfies $e^2 = e$. Show:
 - a) For each $x \in S$, the set $\{x^k \mid k \ge 1\} \subseteq S$ contains a unique idempotent element. This element is some power x^{ℓ} with $1 \le \ell \le |S|$.
 - b) The element $x^{|S|!}$ is idempotent for all $x \in S$.
- 3. Green's Relations

Let us define natural partial orders $\leq_{\mathcal{L}}, \leq_{\mathcal{R}}, \leq_{\mathcal{J}}$ and induced equivalence relations $\sim_{\mathcal{L}}, \sim_{\mathcal{R}}, \sim_{\mathcal{J}}$. They are given by:

Instead of $\sim_{\mathcal{L}}$, $\sim_{\mathcal{R}}$, $\sim_{\mathcal{J}}$ we also write \mathcal{L} , \mathcal{R} , and \mathcal{J} for the corresponding subsets in $M \times M$. These are three out of five relations referred to as *Green's relations*. There are two more relations \mathcal{H} and \mathcal{D} , defined by $\mathcal{H} = \mathcal{L} \cap \mathcal{R}$ and $\mathcal{D} = \mathcal{L} \circ \mathcal{R}$.

Show that

a) $\mathcal{D} \subseteq \mathcal{J}$ and $\mathcal{R} \circ \mathcal{L} \subseteq \mathcal{J}$.

Show that if M is a finite monoid and s, t be \mathcal{J} -equivalent elements (i.e. $s \sim_{\mathcal{J}} t$), then the following assertions hold:

- b) If $s \leq_{\mathcal{R}} t$ (resp. $s \leq_{\mathcal{L}} t$), then $s \sim_{\mathcal{R}} t$ (resp. $s \sim_{\mathcal{L}} t$).
- c) $\mathcal{L}(s) \cap \mathcal{R}(t) \neq \emptyset$, where $\mathcal{L}(s) = \{r \in M \mid r \sim_{\mathcal{L}} s\}$
- d) $\mathcal{J} = \mathcal{D} = \mathcal{L} \circ \mathcal{R} = \mathcal{R} \circ \mathcal{L}$; therefore, \mathcal{D} is an equivalence relation.

Hinweis: Benutzen Sie Aufgabe 2b): es gibt eine Zahl ω , sodass u^{ω} idempotent ist für alle $u \in M$.

4. Green's Lemma

Let M be a finite monoid and $s \in M$. The *local divisor* M_s is defined as follows: It is the set $sM \cap Ms$ together with the multiplication $xs \circ sy = xsy$. The neutral element is s. Note that the \mathcal{H} -class $\mathcal{H}(s)$ is a subset of $sM \cap Ms$.

a) Show that $\mathcal{H}(s)$ is exactly the set of units in M_s .

If we endow the set $\mathcal{H}(s)$ with the operation \circ , then it becomes a group. It is called the *Schützenberger group* of the \mathcal{H} -class $\mathcal{H}(s)$.

Let M be a monoid and s, t be \mathcal{R} -equivalent elements such that s = tu and t = sv. Then the right multiplication v, mapping x to xv, induces a mapping $Ms \to Mt, x \mapsto xv$. Show that the mapping v enjoys the following properties.

- b) It induces an isomorphism between the local divisors M_s and M_t .
- c) It maps $\mathcal{L}(s)$ bijectively onto $\mathcal{L}(t)$.
- d) If *M* is finite, then $\mathcal{L}(s) \xrightarrow{\cdot v} \mathcal{L}(t)$ respects \mathcal{H} -classes. More precisely, if *M* is finite, then $\mathcal{H}(x) \cdot v = \mathcal{H}(xv)$ for $x \in \mathcal{L}(s)$.

Now, let M be finite and $s, t \mathcal{J}$ -equivalent. Conclude the following:

- e) The local divisors M_s and M_t are isomorphic.
- f) The Schützenberger groups $\mathcal{H}(s)$ and $\mathcal{H}(t)$ are isomorphic.
- g) If $e \in M$ is an idempotent, then $\mathcal{H}(e)$ is a subgroup in the monoid M.