
Sublinear Search Spaces for Shortest
Path Planning in Grid and Road Networks

Johannes Blum
Julius-Maximilians-Universität Würzburg

97072 Würzburg, Germany
blum@informatik.uni-wuerzburg.de

Stefan Funke
Universität Stuttgart

70569 Stuttgart, Germany
funke@fmi.uni-stuttgart.de

Sabine Storandt
Julius-Maximilians-Universität Würzburg

97072 Würzburg, Germany
storandt@informatik.uni-wuerzburg.de

Abstract

Shortest path planning is a fundamental building block in
many applications. Hence developing efficient methods for
computing shortest paths in e.g. road or grid networks is an
important challenge. The most successful techniques for fast
query answering rely on preprocessing. But for many of these
techniques it is not fully understood why they perform so re-
markably well and theoretical justification for the empirical
results is missing. An attempt to explain the excellent prac-
tical performance of preprocessing based techniques on road
networks (as transit nodes, hub labels, or contraction hierar-
chies) in a sound theoretical way are parametrized analyses,
e.g., considering the highway dimension or skeleton dimen-
sion of a graph. But these parameters tend to be large (order
of Θ(

√
n)) when the network contains grid-like substructures

– which inarguably is the case for real-world road networks
around the globe. In this paper, we use the very intuitive no-
tion of bounded growth graphs to describe road networks and
also grid graphs. We show that this model suffices to prove
sublinear search spaces for the three above mentioned state-
of-the-art shortest path planning techniques. For graphs with
a large highway or skeleton dimension, our results turn out
to be superior. Furthermore, our preprocessing methods are
close to the ones used in practice and only require random-
ized polynomial time.

Introduction

Shortest paths in general graphs can be computed by Di-
jkstra’s algorithm in near-linear time. Nevertheless, this is
still too slow for many practical purposes, as e.g. providing
driving directions in real-time for road networks of conti-
nental size, or finding shortest paths in large grid domains
as game maps. This spurred the development of preprocess-
ing based shortest path speed-up techniques. Here, auxil-
iary data is created in a preprocessing phase which can then
be used to prune the search space for subsequent queries
yet preserving optimality of the result. Incarnations of this
scheme, as contraction hierarchies [CH] (Geisberger et al.
2012), transit nodes [TN] (Bast et al. 2007), and hub labels
[HL] (Abraham et al. 2011b), allow the answering of short-
est path queries on large road networks and grids in millisec-
onds or less, while exhibiting small preprocessing times and

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

space consumption. But there is still a lack of theoretical ex-
planation why these approaches perform so remarkably well
in practice. The main question is which characteristics of a
network are necessary or sufficient to guarantee efficiency.

The notion of highway dimension (Abraham et al. 2010)
was introduced for this purpose. Intuitively, the highway di-
mension h of a graph is small if there exist sparse local hit-
ting sets for shortest paths of a certain length. For CH and
HL, query times in O(h logD) were proven (with D de-
noting the network diameter), and O(h2) for TN. The space
consumption was shown to be in O(nh logD) or O(hn), re-
spectively. The hope would be that real-world networks ex-
hibit a highway dimension which is logarithmic in the size
n of the network. But for grid graphs with uniform costs,
h ∈ Θ(

√
n) was proven. Grids comply with all standard

characterizations of road networks, as constant maximum
degree Δ, a linear number of edges m = |E|, and (near)
planarity. And all three – CH, TN and HL – have been
successfully applied to (pure) grid graphs (Storandt 2013;
Antsfeld et al. 2012; Delling et al. 2014). The notion of high-
way dimension is not sufficient to explain these results as,
e.g., the query times of TN are superlinear for h ∈ Θ(

√
n).

And as many real-world road networks contain large grid-
like substructures, a highway dimension in the same order is
to be expected. For the U.S. road network and for the Ger-
man road network with about 20 million nodes each, a high-
way dimension of more than 1,000 is known, which renders
a logarithmic highway dimension unlikely.

We will use a different model, assuming that the under-
lying graph metric has bounded growth. This model was
empirically proven to reflect real-world road networks well
(Funke and Storandt 2015), and also subsumes grid graphs.
We show that the bounded growth assumption suffices to
prove sublinear query times, a clearly subquadratic space
consumption and randomized polynomial time preprocess-
ing for CH, TN and HL in unweighted graphs.

Related Work

There have been some attempts besides the highway dimen-
sion trying to explain the good performance of shortest path
planning techniques. We will now briefly review these meth-
ods and ideas. For a concise overview, we refer to Table 1.

For HL, the recently described skeleton dimension k
(Kosowski and Viennot 2017) is also suitable to prove a the-

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

6119

original result h,k, t ∈ O(
√
n)

CH: graphs with highway dimension h
query O(h logD) O(

√
n logD)

space O(nh logD) O(n
√
n logD)

CH: minor-closed graphs with balanced separators

query O(
√
n)

space O(n log n)
CH: graphs with treewidth t
query O(t log n) O(

√
n log n)

space O(nt log n) O(n
√
n log n)

CH: bounded growth model, correct queries w.h.p.*

query O(
√
n log n)

space O(n log2 n)
CH: bounded growth model (NEW!)*

query O(
√
n log n)

space O(n logD)

special TN variant: graphs with highway dimension h
query (Δ + h logD) O(Δ +

√
n logD)

space O(nh logD) O(n
√
n logD)

TN: graphs with highway dimension h
query O(h2) O(n)
space O(hn+m) O(n

√
n+m)

TN: bounded growth model (NEW!)*

query O(n2/3 log8/3 n)

space O(n4/3 log4/3 n)

HL: graphs with highway dimension h
query O(h logD) O(

√
n logD)

space O(nh logD) O(n
√
n logD)

HL: graphs with skeleton dimension k*

query O(k logD) O(
√
n logD)

space O(nk logD) O(n
√
n logD)

HL: bounded growth model (NEW!)*

query O(
√
n)

space O(n
√
n)

Table 1: Theoretical results for shortest path speed-up tech-
niques in dependency of n (number of nodes), m (number
of edges), Δ (maximum degree), D (diameter), h (high-
way dimension), k (skeleton dimension) and t (tree width).
Space consumption is measured in machine words. Results
marked with a * exhibit (randomized) polynomial prepro-
cessing times. For results in dependency of h there exist
also polytime preprocessing variants with slightly increased
query/space bounds.

oretical query time of O(k logD) and a space consumption
of O(nk logD). For graphs with bounded maximum degree,
k ∈ O(h) is known. For some graphs there is an exponen-
tial gap between highway and skeleton dimension, as shown
in (Kosowski and Viennot 2017) via a carefully weighted
square grid where h ∈ Ω(

√
n) and k ∈ O(log n). However,

for other grids one obtains again a skeleton dimension of
k ∈ Θ(

√
n), leading to the same time and space bounds as

in the highway dimension dependent analysis.
In (Bauer et al. 2013), CH were analyzed by consider-

ing only the topology of the network. For graphs with a tree
width t, the query time was shown to be in O(t log n), the
space consumption in O(nt log n). But again, for grids, we
have t ∈ Θ(

√
n).

In (Funke and Storandt 2015), the bounded growth model
was suggested to capture the characteristics of road net-
works. Then CH was analyzed by drawing a connection to
randomized skip lists. Queries were proven to be answered
correctly with high probability (w.h.p). We will also use the
bounded growth model in our analysis, improving the previ-
ous result for CH, and showing that this model is also suit-
able to explain the good performance of TN and HL.

Contribution

We show that the bounded growth model in combination
with randomized preprocessing is suitable to prove sublin-
ear search space sizes for the three state-of-the-art short-
est path planning techniques, contraction hierarchies (CH),
transit nodes (TN) and hub labels (HL) in unweighted net-
works, while using subquadratic space. More precisely, we
provide the following results:

• We analyze the relationship between bounded growth and
the skeleton dimension of the graph. In particular, we
show that the integrated skeleton dimension of a bounded
growth graph is upper bounded by O(

√
n). This allows us

to achieve new improved query times and space bounds
for HL on graphs with h, k ∈ Θ(

√
n).

• For randomized CH, we improve the space consumption
reported in (Funke and Storandt 2015) from O(n log2 n)
to O(n logD) by using a new random contraction order.
Furthermore, we show that randomized CH can be con-
structed in polynomial time such that all queries are an-
swered correctly (and not only w.h.p. as in (Funke and
Storandt 2015)).

• We show how to instrument ε-net theory and random sam-
pling for TN preprocessing. We provide a parametrized
analysis which allows to trade space consumption against
query time. On that basis, we achieve the smallest known
space bound for TN and sublinear query times on graphs
with h ∈ Θ(

√
n).

The new results are summarized in Table 1 as well.

Bounded Growth and Skeleton Dimension

We first introduce the basic notation and formally define
the bounded growth model. For the remainder of this pa-
per we consider a directed graph G(V,E) with n = |V |
nodes, m = |E| edges and uniform edge costs. In real-world
road networks the ratio between the longest and the short-
est edge is typically bounded by a small constant, so sub-
sampling long edges to achieve uniform edge lengths does
not increase the graph size considerably (similar arguments
were used in (Kosowski and Viennot 2017)). We assume all
shortest paths to be unique in G, which is a standard assump-
tion but can also be enforced, e.g., by lexicographic sorting
of edges. We denote with dv(w) the shortest path distance
from v to w. All nodes within a distance r of v are said to be
contained in the ball Br(v).

Bounded Growth Model

Throughout our analysis, we assume the graph metric to
have bounded growth (not to be confused with the notion of

6120

growth bounded graphs as used in (Kuhn et al. 2005)). For-
mally, we demand that for some constant c ∈ R

+ (w.l.o.g.
c ≥ 1), the number of nodes at distance r from a node v is
bounded by cr, implying |Br(v)| ≤ cr(r + 1)/2 ∈ O(r2).
Intuitively, this reflects the area growth of a disk in the Eu-
clidean plane in dependency of its radius.

In (Funke and Storandt 2015), it was shown empirically
that the bounded growth model represents real-world road
networks well. In fact, c can be computed for a network in
polynomial time (the same is true for k but not for h or t).
The results reported in (Funke and Storandt 2015) imply that
for Euclidean edge costs, c = 1 is valid. We furthermore ob-
serve that grids with uniform costs fit the model well as the
number of nodes at distance r is bounded by 4r. Hence our
model subsumes grid networks with a highway dimension,
a skeleton dimension as well as a tree width of Θ(

√
n).

Relation to Skeleton Dimension

For a formal definition of the skeleton dimension (Kosowski
and Viennot 2017), let T̃u be the geometric realization of the
shortest path tree Tu of some vertex u. Intuitively, T̃u con-
sists of infinitely many infinitely short edges such that for
every edge vw of Tu and any α ∈ [0, 1] there is a vertex
in T̃u at distance α from v and distance 1 − α from w. The
skeleton T ∗

u of Tu is now defined as the subtree of T̃u in-
duced by all vertices v that have a descendant w satisfying
dv(w) ≥ 1

2du(v). The skeleton dimension k of a graph G
is defined as k = maxu∈V,r>0 x

∗
u,r where x∗

u,r denotes the
number of vertices in T ∗

u that are at distance r from u.
The doubling dimension of a graph with skeleton dimen-

sion k was shown to be 2k+1 (Kosowski and Viennot 2017).
We now investigate the relationship between the skeleton di-
mension and the bounded growth model.

Lemma 1 The skeleton dimension of a bounded growth
graph with uniform edge costs is upper bounded by O(

√
n).

Proof. Consider a graph G(V,E, l) with the mentioned
properties. Then there is a vertex u ∈ V such that the
geometric realization T̃u of the shortest path tree Tu

contains a set S̃ of k vertices at some depth r that have a
descendant at distance at least r/2. Every vertex from S̃ has
�r/2� > r/4 descendants contained in G. For every v ∈ S̃
let wv be the first descendant of v satisfying wv ∈ V if
v �∈ V , otherwise let wv = v. Then for S = {wv : v ∈ S̃}
we have |S| = |S̃| = k and as G has bounded growth
we have k ≤ c · 	r
 < c · (r + 1). This means that
n ≥ kr/4 > k(k/c− 1)/4, so k ∈ O(

√
n).

The authors of (Kosowski and Viennot 2017) also intro-
duced the integrated skeleton dimension which weights the
vertices in a shortest path tree according to their distance.
For a vertex u ∈ V the integrated skeleton dimension is
k̂(u) =

∑
r∈N

x∗
u,r/r with x∗

u,r being defined as above.
On general graphs k̂(u) is bounded by O(k logD). If the
graph has bounded growth, we can however show a bound
of O(

√
n) as a consequence of the following Lemma (ob-

serve that x∗
u,r ≤ xu,r).

Lemma 2 Let xu,r denote the number of nodes at distance
r from a node u. Then we have

∑D
r=1 xu,r/r ∈ O(

√
n) in

bounded growth graphs.

Proof. As
∑D

r=1 xu,r = n and xu,r ≤ cr for r ∈ N, the sum
is bounded for xu,r = cr if r = 1, . . . ,

√
2n and xu,r = 0

otherwise by
∑√

2n
r=1 cr/r = c · √2n ∈ O(

√
n).

Corollary 3 The integrated skeleton dimension of any ver-
tex u in a bounded growth graph is at most O(

√
n).

While these results might be of independent interest, we will
explicitly use them when bounding the query time and the
space consumption of HL in bounded growth graphs.

Hub Labels

In the hub labels (HL) approach, every node v gets assigned
a set of labels L(v). Here a label is a node w, together with
the distance dv(w). The goal is to find concise label sets
which fulfill the so-called cover property, that is, for every
s, t ∈ V the label set intersection L(s)∩L(t) contains a node
w on the shortest path from s to t. If this is the case, queries
can be answered by simply summing up ds(w) + dt(w) for
all w ∈ L(s) ∩ L(t) and keeping track of the minimum.
Computing L(s) ∩ L(t) can be done by a merging-like step
assuming the label sets are presorted by node IDs. There-
fore the query time is in O(|L(s)|+ |L(t)|), while the space
consumption is in O(

∑
v∈V |L(v)|).

Previous Analyses

In (Abraham et al. 2013; 2011a) hub labels were constructed
by computing multiple hitting sets Hr for sets of shortest
paths with length r = 1, 2, 4, · · · , D. The label set of a sin-
gle node v is then determined by L(v) =

⋃
r(Hr ∩B2r(v)).

As there are logD many radii to consider and Hr∩B2r(v) ∈
O(h) according to the definition of the highway dimension,
the label size and therefore the query time is in O(h logD)
for exponential time preprocessing (computing optimal hit-
ting sets), and the space consumption in O(nh logD). If hit-
ting sets are constructed via a greedy algorithm in polyno-
mial time, the label size and the space consumption increase
by a factor of O(log n). In (Kosowski and Viennot 2017),
a more practical algorithm for HL was introduced and ana-
lyzed. There, a shortest path tree is computed for each node,
and then hub labels are selected on certain subpaths via a
randomized process. A thorough analysis shows that this
leads on average to the selection of O(k logD) labels per
node, so the total space consumption is in O(nk logD).

Analysis in the Bounded Growth Model

We keep our analysis close to the one in dependency of the
skeleton dimension(Kosowski and Viennot 2017). Here, ran-
dom values ρ(e) are assigned to every edge e and for all
u, v ∈ V a hub edge η(u, v) is selected as the edge with the
minimum value of ρ on the so-called central subpath of u
and v. Intuitively, the central subpath of u and v contains
all the edges from the shortest u-v-path whose endpoints
are not too close to u and v. For more details we refer to

6121

(Kosowski and Viennot 2017). The label set L(u) of a node
u is then constructed as the set of the endpoints of all hub
edges η(u, v). In total, this takes time O(n log n) for ev-
ery label set. The average size of a single label set can be
bounded by O(1n

∑
u∈V k̂(u)). From Corollary 3 the fol-

lowing Theorem follows.

Theorem 4 HL in bounded growth graphs can be computed
in randomized polynomial time with expected query times of
O(

√
n) and a space consumption of O(n

√
n).

This improves on the respective results reported in
(Kosowski and Viennot 2017) assuming k ∈ Θ(

√
n) by a

factor of log n and is clearly superior to the highway dimen-
sion dependent analysis for h ∈ Θ(

√
n).

Contraction Hierarchies

CH construction relies on the so-called node contraction op-
eration. Here, a node v is deleted from the graph, and short-
cut edges are inserted between the neighbors of v if they are
necessary to preserve the pairwise shortest path distances.
The preprocessing phase of CH consists of contracting all
nodes one-by-one until the graph is gone. In the end, a new
graph G+(V,E ∪ E+) is constructed, with E+ being the
set of shortcut edges that were inserted during the contrac-
tion process. So the space consumption of CH is determined
by Θ(|E+|). The rank of a node in the order of contrac-
tion is called rank(v). In an s-t-query, bidirectional Dijk-
stra runs are used from s and t in G+. But edges (v, w) are
only relaxed if rank(v) < rank(w), i.e., w was contracted
after v. It was proven that both runs will settle the node that
was contracted last on the original shortest path from s to t
in G. Hence identifying p such that ds(p) + dt(p) is mini-
mized leads to correct query answering. The search space of
a query is defined by the number of nodes settled in these
Dijkstra runs.

Note that any contraction order leads to correct queries,
but the space consumption and the search space sizes heavily
depend on the contraction order.

Previous Analyses

The topology based analysis of CH (Bauer et al. 2013) in-
spired a different CH construction scheme based on nested
dissections. It was proven that this scheme also leads to ex-
cellent performance in practice (Dibbelt, Strasser, and Wag-
ner 2014). Nevertheless, the theoretical results do not di-
rectly apply for practical instances as the computation of
a balanced separator of minimum size as required in the
preprocessing is NP-hard. Hence these computations are re-
placed by heuristics when applied to real networks.

The NP-hard preprocessing as well as the polynomial
time preprocessing when assuming a highway dimension of
h both involve the enumeration of all shortest paths in the
network and computing (approximate) hitting sets, taking at
least superquadratic time and space in n. Therefore, these
schemes cannot be applied to large real-world networks ei-
ther (Abraham et al. 2013).

The skip list inspired randomized CH construction was
shown to be implementable (Funke and Storandt 2015).

Nevertheless, it also differs from the heuristic construction
described in the original CH paper. We will revisit the orig-
inal node contraction scheme and show that it leads to even
better space bounds for randomized CH.

Analysis in the Bounded Growth Model

In contrast to previous provably efficient CH construction
schemes (Abraham et al. 2011a; 2013; Bauer et al. 2013;
Dibbelt, Strasser, and Wagner 2014), which involve rather
heavy algorithmic machinery such as graph separators or
hitting set algorithms, our randomized scheme maintains the
simplicity of the original CH idea. While in (Geisberger et
al. 2012) (and most state-of-the-art implementations of CH)
the order is determined on-the-fly using quantities like edge
difference, we simply contract the nodes in (uniform) ran-
dom order, otherwise we employ exactly the same contrac-
tion process. Also our query algorithm closely resembles the
original query algorithm with a slight modification similar to
the stall-on-demand technique in (Geisberger et al. 2012).
Space Consumption. The space consumption of a CH is de-
fined by the number of shortcuts created in the preprocess-
ing. Hence we now aim for an upper bound on this number.

Lemma 5 The expected number of shortcuts created in a
CH with random contraction order is upper bounded by
O(n logD) in bounded growth graphs.

Proof. Consider a pair v, w of nodes with shortest path
π = vv1v2 . . . vr−1w of length r. A shortcut from v to w
is created if and only if rank(w) > rank(v) and the ranks
of all intermediate nodes on π are smaller than rank(v). For
a random permutation, the probability of the event S ’short-
cut (v, w) created’ to happen is

P (S) =
(r − 1)!

(r + 1)!
=

1

r(r + 1)

since w must have the largest rank amongst the r+1 nodes,
v the second largest, and the remaining ranks can be arbi-
trarily distributed. Now we compute the expected number of
shortcuts created by summing over all pairs of nodes v, w,
always considering the probability of a shortcut being cre-
ated:

∑
v,w P (S) =

∑D
r=1

∑
v,w:d(v,w)=r P (S). Having re-

arranged the sum according to the distance of the involved
nodes, we continue by plugging in our derived probability
and making use of the bounded growth property which im-
plies that there are no more than n · cr pairs of nodes with
distance r:
D∑

r=1

∑
v,w:d(v,w)=r

1

r(r + 1)
≤

D∑
r=1

(n · cr) 1

r(r + 1)

= c · n
D∑

r=1

1

r + 1
= O(n logD)

Search Space Size. As in (Funke and Storandt 2015), we
define the search space SS(v) for a node v ∈ V as the num-
ber of nodes that are pushed into the priority queue (PQ)

6122

during a CH-Dijkstra run from v. We will first analyze the
direct search space (DSS) of v. A node w is in DSS(v) if
on the shortest path from v to w all nodes have rank at most
rank(w). Hence, w will be settled with the correct distance
d(v, w) in the CH-Dijkstra run. Unfortunately, SS(v) is typ-
ically a superset of DSS(v) as also nodes on monotonously
increasing (with respect to rank) but non-shortest paths are
considered. We will modify the query algorithm to bound
the number of such nodes.

Lemma 6 The probability of a node w at distance r to be
contained in DSS(v) is 1/(r + 1).

Proof. Consider the nodes v = v0v1v2 . . . vr = w of the
shortest path from v to w. The node w is in DSS(v) iff
rank(vi) < rank(w) for all i = 0, . . . r − 1. Clearly each
of the vi, i = 0, . . . r has the same probability 1/(r + 1) of
having the largest rank amongst v0, v1, . . . , vr, the Lemma
follows.

Lemma 7 The expected size of DSS(v) in a bounded
growth graph is O(

√
n).

Proof. Recall that xv,r denotes the number of nodes at dis-
tance r, furthermore let pr be the probability of a node at
distance r to be in DSS(v). Then we can sum up over all
nodes at all possible distances as follows:

D∑
r=0

xv,rpr =
D∑

r=1

xv,r/(r + 1) <
D∑

r=1

xv,r/r

The claim now follows from Lemma 2.
Unfortunately, the actual search space SS(v) during a query
execution might be considerably larger than the direct search
space DSS(v). As in actual CH implementations (via the
technique of stall-on-demand, (Geisberger et al. 2012))
we will modify the search procedure, pruning nodes from
SS(v) (by not putting them into the priority queue) which
for sure cannot be part of the shortest path we are after.

To that end, we first need to investigate the correlation of
a node w being in DSS(v), its distance from v, and its rank.
Intuitively, when considering a shortest path π consisting of
r + 1 nodes we would expect the highest rank appearing
amongst the nodes of π to be n−n/(r+2) = n(1−1/(r+
2)). The following Lemma formalizes this intuition showing
that the probability for deviating greatly from the expected
rank is slim.

Lemma 8 The probability of a node w at distance r to v for
being in DSS(v) and having rank(w) ≤ n(1 − c′/r ln r)
is less than r−(c′+1).

Proof. Let v = v0v1 . . . vr = w be the shortest path from v
to w. The probability p for all nodes vi, 0 ≤ i ≤ r having
rank at most R := n(1 − c′/r ln r) (a clear prerequisite for
w being contained in DSS(v) and having rank at most R)
can be upper bounded by counting all permutations where

this happens dividing by the total number of permutations

p =

(
R

r+1

)
(r + 1)!(n− r − 1)!

n!
=

R!(n− r − 1)!

n!(R− r − 1)!

<

(
R

n

)r+1

=

(
1− c′ ln r

r

)r+1

≤
(
e

−c′ ln r
r

)r+1

< r−c′

Amongst all these permutations we are only interested in
those permutations which result in w being in DSS(v).
But those are exactly those where the rank of w is maxi-
mal amongst the ranks of v0, . . . , vr. So given that all nodes
v0, . . . , vr have rank ≤ R, the probability of w being in
DSS(v) is 1/(r+1) < r−1. Hence the probability for w be-
ing in DSS(v) and having rank at most R is upper bounded
by r−(c′+1).
For appropriate choice of c′, we can now actually prove that
with high probability there is no node in DSS(v) with too
small a rank:
Lemma 9 For c′ > 2, the probability that there exist ver-
tices v ∈ V and w ∈ DSS(v) with the shortest path from
v to w having length r > n1/4 and the rank of w being less
than n(1− c′/r ln r) is upper bounded by n

−c′+7
4 .

Proof. There are less than n2 pairs (v, w) to consider. Ac-
cording to Lemma 8, the probability of w ∈ DSS(v) and
the rank of w being small is bounded by r−(c′+1) for each
of them,. For r > n1/4 this probability is upper bounded by
n−(c′+1)/4. The statement follows by the union bound over
the at most n2 bad events.
This suggests a modification of the standard search proce-
dure and pushing nodes w with tentative distance d(w) into
the priority only if (1) d(w) ≤ n1/4 or (2) d(w) > n1/4

and rank(w) ≥ n
(
1− c′ ln d(w)

d(w)

)
. So when constructing a

CH based on a random permutation of the nodes and em-
ploying the above search procedure, with high probability,
all queries are answered correctly. There is a slim chance
less than n

−c′+7
4 that we incorrectly prune out one or more

nodes in one of the direct search spaces.
Lemma 10 The expected size of the search space for an s-t
query is bounded by O(

√
n log n)

Proof. Let xs,r denote the number of nodes at distance r

from s. The number of nodes with r ≤ n1/4 can be eas-
ily bounded by

∑n1/4

r=0 c · r ≤ c
√
n ∈ O(

√
n). For the

nodes further away, we only sum up the ones with a rank
> n(1 − c′ ln r

r). The probability of a node to have such a
rank is c′ ln r

r . So we are interested in
∑D

r=n1/4 xs,r
c′ ln r

r . As
c′ ln r

r decreases with growing r, and the sum is maximized
for D =

√
2n, we can upper bound the sum as follows:

D∑
r=n1/4

xs,r
c′ ln r
r

≤
√
2n∑

r=1

c · r c
′ ln r
r

= c · c′
√
2n∑

r=1

ln r

≤ c · c′
√
2n ln

√
2n ∈ O(

√
n log n)

6123

So in total, the search graph of s contains at most
O(

√
n log n) nodes. The same argumentation holds for t re-

spectively, the statement of the Lemma follows.

From Monte Carlo to Las Vegas Preprocessing. The ran-
domized CH construction with the modified query routine
guarantees an expected data structure size of O(n logD)
and expected search space size of O(

√
n log n), yet the out-

come is only correct with probability at least 1−n(−c′+7)/4.
It is not difficult, though, to guarantee that no far away nodes
exhibit too small a rank. This can be done by performing a
Dijkstra computation from each node and checking that all
nodes further away than n1/4 exhibit large enough rank. If
a node with too small a rank is found, the whole prepro-
cessing is repeated. For a choice of c′ ≥ 8, in expectation
less than one repetition is necessary. The construction cost
can be bounded by O(n2 log2 n + mn log n), the verifica-
tion has cost O(n2 log n + nm), hence we end up with the
following theorem:

Theorem 11 For bounded growth graphs, a randomized
CH with O(n logD) shortcuts and search space sizes of
O(

√
n log n) can be computed in expected O(n2 log2 n +

nm log n) time.

Remember that for h, t ∈ O(
√
n), for the number of

shortcuts only a bound of O(n
√
n log n) could be obtained

in previous work. Our result for bounded growth graphs is
better by a factor of

√
n (with matching or improved search

space sizes), and matches results previously only achieved
for planar graphs and minor-closed graphs with balanced
separators (Bauer et al. 2013; Milosavljević 2012). Note also
that the space consumption of a CH in dependency of h was
lower bounded by Θ(nh logD) in (White 2015). Hence our
space consumption of O(n logD) cannot be beaten by any
analysis based on (even constant) highway dimension.

Transit Nodes

The TN algorithm relies on the observation that all optimal
paths from some small region to faraway destinations (for
some notion of far) pass through a small set of so-called ac-
cess nodes. If ’far’ is defined as having a distance at least
r, this means, there needs to be a concise hitting set for all
shortest paths that leave/enter the ball Br(v) for every node
v ∈ V . This hitting set is called the access node set AN(v)
of v. The union of all access node sets forms the transit node
set T . For a suitable radius r, access node sets of close-
by nodes can have large intersections, hence it is possible
to construct small transit node sets in practice. This is im-
portant, because for every pair of transit nodes, the shortest
path distance is precomputed and stored in a look-up table.
Therefore the space consumption is quadratic in the number
of transit nodes. In addition, every node stores the distances
to all its access nodes. So the total space consumption can
be expressed as |T |2 +∑

v∈V |AN(v)|.
There are two types of queries in the end, ’long’ queries

with ds(t) > r, and ’short’ queries. A ’long’ s-t-query re-
duces to check all access node distances of s and t and the

respective distances between them, all of which is precom-
puted. Hence the query time is in |AN(s)| · |AN(t)|. For
’short’ queries, the TN approach does not guarantee correct-
ness. Therefore, a local Dijkstra computation (up to radius r)
is used as fall-back. As ds(t) is not known beforehand, the
query is first treated as long query. If the distance value re-
turned is ≥ 5r, the result is correct for sure, see (Eisner and
Funke 2012). Otherwise, the query is treated subsequently as
’short’ query and the best outcome of both query procedures
is returned.

Previous Analysis

In (Abraham et al. 2013), the TN approach was analyzed
by first fixing |T | ≤ √

m and then computing hitting sets
Tr for r = D,D/2, · · · to choose the smallest r such that
|Tr| ≤

√
m holds. Access nodes are then computed per node

v by collecting the set of transit nodes that first hit a shortest
path starting at v. Note that the radius r to distinguish short
and long queries can not be fixed a priori with this approach,
but is only known after the preprocessing.

In the end, the space consumption is dominated by storing
the access node sets. This implies that the total space con-
sumption might be improved by allowing a slightly larger
transit node set. In the following, we provide a parametrized
analysis which allows to balance the space consumption bet-
ter. This also enables to fix the radius r for short queries
a priori. Our preprocessing time will turn out to be sub-
quadratic for reasonable choices of r. This is a significant
improvement compared to (Abraham et al. 2013), where
both preprocessing time and space are superquadratic at best
(and cubic in a naive implementation). Furthermore, our
query times will be sublinear even if the networks contains
large grid-like structures.

VC-Dimension and ε-Net Construction

In our TN construction, we do not fix the transit node set size
a priori. Instead we consider the radius r as a parameter. The
goal is then to hit all shortest paths of length at least r with
a concise set of nodes.

The general hitting set problem is NP-hard with an inap-
proximability bound of ln |S|(1 − o(1)) with |S| being the
number of sets in the system. Better bounds are achievable,
though, if the set system has a low VC-dimension (Vapnik
and Chervonenkis 2015). In case S is a set of unique short-
est paths, it was proven that the VC-dimension d is at most 2
for undirected networks (Abraham et al. 2011a; Tao, Sheng,
and Pei 2011) and 3 for directed networks (Funke, Nusser,
and Storandt 2014). For a set system with VC-dimension
d, a hitting set of size O(d log(dOPT) ·OPT) can be com-
puted efficiently (Brönnimann and Goodrich 1995). The fact
that shortest path sets have a constant VC-dimension was ex-
ploited in (Abraham et al. 2013) to find hitting sets of size
O(h log h) instead of O(h log n) in polytime.

In our analysis, we use the fact that for systems with con-
stant VC-dimension d, there exist small ε-nets. An ε-net for
ε ∈ [0, 1] is a hitting set for all sets S ∈ S with |S| ≥ ε|U |.
So setting εn = r, the respective ε-net is a valid set of transit
nodes for parameter r. It was shown that a random sample

6124

of U of size d/ε log 1/ε is an ε-net with constant probabil-
ity (Haussler and Welzl 1986). For a random sample of size
|T | = O(n/r log n/r), we can check whether it is indeed
an r/n-net for G in polynomial time. Hence, we can find in
expected polynomial time a true r/n-net which then serves
as transit node set T .

It remains to compute the expected number of access
nodes for v ∈ V . As all shortest paths of length ≥ r
are hit, it suffices to count the ε-net nodes in an r-radius
around v, that is AN(v) = Br(v) ∩ T . According to our
bounded growth model |Br(v)| ∈ O(r2). The probabil-
ity for some node to be in T is d/r log n/r (with d = 2
or d = 3). Hence the expected number of access nodes is
E(|AN(v)|) = O(r log n/r).

Theorem 12 In bounded growth graphs, TN can be com-
puted in expected O(n2/r log2 n + nr2 log r) time. The ex-
pected space consumption is in O(n2/r2 log2 n+ nr log n)
and the expected query time in O(r2 log2 n).

Proof. The first phase of the preprocessing consists of
choosing a random sample of size O(n/r log n/r), and
checking its validity. The check requires Dijkstra runs
from each v ∈ V up to distance r, making sure that every
shortest path of length r is hit. This takes a total time of
O(nr2 log r) when invoking the bounded growth model.
As the success probability for a random sample to be a
valid net is constant, we only expect a constant number
of repetitions to find a valid net. It remains to compute
the pairwise distances between the transit nodes, which
can be accomplished in O(|T |n log n) = O(n2/r log2 n).
The computation of the access node distances for every
v ∈ V is equivalent to the validity check. So the total
preprocessing time is in O(n2/r log2 n + nr2 log r).
The expected space consumption can be computed as
|T |2 +

∑
v∈V E(|AN(v)|) = O(n2/r2 log2 n + nr log n)

with |T | = O(n/r log n) and E(|AN(v)|) = O(r log n),
upper bounding log n/r terms by log n. The expected query
time is E(|AN(v)|)2 = O(r2 log2 n) for long queries and
O(r2 log r) for short queries, hence O(r2 log2 n) in total.

The above Theorem allows to choose r such that the total
space consumption is minimized.

Lemma 13 In bounded growth graphs, TN can be computed
in randomized polynomial time with an expected space con-
sumption of O(n4/3 log4/3 n) and expected query times of
O(n2/3 log8/3 n).

Proof. Let f(r) = n2/r2 log2 n + nr log n de-
scribe the space consumption up to a constant
factor. To find the global minimum, we compute
f ′(r) = −2n2/r3 log2 n + n log n = 0. Rearranging
this term results in r3 = 2n log n. Hence the radius
minimizing the space consumption is in Θ(n1/3 log1/3 n).
Inserting this term in the formulas for space consumption
and query time given in Theorem 12 concludes the proof.

We observe that under the assumption h ∈ Θ(
√
n), our

new bound O(n4/3 log4/3 n) is the smallest known space
consumption bound for TN; and we achieve sublinear query
times using this space. But we can also allow the same space
consumption as required in (Abraham et al. 2013) with poly-
nomial time preprocessing and analyze the query times un-
der this condition.

Lemma 14 In bounded growth graphs, ε-net based TN
can be computed in randomized polynomial time with a
space consumption of O(n

√
n log n) and query times of

O(
√
n log4 n).

Proof. The goal is to find the smallest r such that
O(n2/r2 log2 n + nr log n) = O(n

√
n log n). The first

summand requires r ≥ cn1/4 log n, the second r ∈ O(
√
n).

As log n ∈ O(n1/4), both conditions are fulfilled for
r ∈ Θ(n1/4 log n). The respective query time is then
O(n1/2 log2 n log2 n) = O(

√
n log4 n).

Compared to the query time of O((h log h)2) =
O(n log2 n) for h ∈ Θ(

√
n), our query times are better by a

factor of
√
n/ log2 and clearly sublinear. If we allow a space

consumption of O(n
√
n log2 n) as required for the special

TN-variant in (Abraham et al. 2010) with polynomial pre-
processing, we get r = n1/4 as smallest feasible radius and
hence a query time of O(

√
n log2 n). This matches the result

in (Abraham et al. 2010) assuming h ∈ Θ(
√
n).

Corollary 15 For r = Θ(nε logO(1) n) the preprocessing
time is subquadratic for all ε ∈]0, 0.5[according to Theorem
12.

We observe that this Corollary applies for all our analyzed
radius values r ∈ Θ(n1/3 log1/3 n), r ∈ Θ(n1/4) and r ∈
Θ(n1/4 log n).

In summary, our analysis in the bounded growth model
yields better bounds on the space consumption, the query
times and the preprocessing times for TN compared to the
h-dependent analysis for h ∈ Θ(

√
n).

Conclusions and Open Problems

We showed that the bounded growth model is sufficient to
prove sublinear search spaces for contraction hierarchies,
transit nodes and hub labels. Results for all three approaches
were previously only available in dependency of the high-
way dimension of the network. For graphs where the high-
way dimension (as well as the treewidth and the skeleton
dimension) is in the order of O(

√
n) – which is the case for

grid graphs and also most likely for many road network in-
stances – our derived bounds on the search space sizes, the
space consumption, and the preprocessing times match pre-
vious results or are superior.

In terms of analyzing contraction hierarchies, it is still
open how to get a sublinear bound on the number of edge
relaxations during a query when allowing grid structures.
Furthermore, lower bounds for query times and space con-
sumption when assuming bounded growth would be of in-
terest to see if our analyses are tight.

6125

References

Abraham, I.; Fiat, A.; Goldberg, A. V.; and Werneck, R. F. F.
2010. Highway dimension, shortest paths, and provably ef-
ficient algorithms. In Proceedings of the Twenty-First An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA
2010, Austin, Texas, USA, January 17-19, 2010, 782–793.
Abraham, I.; Delling, D.; Fiat, A.; Goldberg, A. V.; and Wer-
neck, R. F. F. 2011a. VC-dimension and shortest path al-
gorithms. In Proc. 38th International Colloquium on Au-
tomata, Languages and Programming, (ICALP), 690–699.
Abraham, I.; Delling, D.; Goldberg, A. V.; and Werneck,
R. F. 2011b. A hub-based labeling algorithm for shortest
paths in road networks. In International Symposium on Ex-
perimental Algorithms, 230–241. Springer.
Abraham, I.; Delling, D.; Fiat, A.; Goldberg, A. V.; and Wer-
neck, R. F. 2013. Highway dimension and provably efficient
shortest path algorithms. Technical Report MSR-TR-2013-
91, Microsoft Research.
Antsfeld, L.; Harabor, D. D.; Kilby, P.; Walsh, T.; et al. 2012.
Transit routing on video game maps. In AIIDE.
Bast, H.; Funke, S.; Sanders, P.; and Schultes, D. 2007.
Fast routing in road networks with transit nodes. Science
316(5824):566–566.
Bauer, R.; Columbus, T.; Rutter, I.; and Wagner, D. 2013.
Search-space size in contraction hierarchies. In Proc. 40th
International Colloquium on Automata, Languages, and
Programming (ICALP), 93–104.
Brönnimann, H., and Goodrich, M. T. 1995. Almost optimal
set covers in finite vc-dimension. Discrete & Computational
Geometry 14(4):463–479.
Delling, D.; Goldberg, A. V.; Pajor, T.; and Werneck, R. F.
2014. Robust exact distance queries on massive networks.
Microsoft Research, USA, Tech. Rep 2.
Dibbelt, J.; Strasser, B.; and Wagner, D. 2014. Customizable
contraction hierarchies. In Proc. 13th International Sympo-
sium on Experimental Algorithms (SEA), 271–282.
Eisner, J., and Funke, S. 2012. Transit nodes lower bounds
and refined construction. In Proc. 14th Workshop on Algo-
rithm Engineering and Experiments (ALENEX), 141–149.
Funke, S., and Storandt, S. 2015. Provable efficiency of con-
traction hierarchies with randomized preprocessing. In Proc.
26th International Symposium on Algorithms and Computa-
tion ISAAC, 479–490.
Funke, S.; Nusser, A.; and Storandt, S. 2014. On k-path
covers and their applications. Proceedings of the VLDB En-
dowment 7(10):893–902.
Geisberger, R.; Sanders, P.; Schultes, D.; and Vetter, C.
2012. Exact routing in large road networks using contrac-
tion hierarchies. Transportation Science 46(3):388–404.
Haussler, D., and Welzl, E. 1986. Epsilon-nets and simplex
range queries. In Proceedings of the Second Annual Sympo-
sium on Computational Geometry, SCG ’86, 61–71.
Kosowski, A., and Viennot, L. 2017. Beyond highway
dimension: Small distance labels using tree skeletons. In

Proceedings of the Twenty-Eighth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA ’17, 1462–1478.
Philadelphia, PA, USA: Society for Industrial and Applied
Mathematics.
Kuhn, F.; Moscibroda, T.; Nieberg, T.; and Wattenhofer, R.
2005. Fast deterministic distributed maximal independent
set computation on growth-bounded graphs. Distributed
Computing 273–287.
Milosavljević, N. 2012. On optimal preprocessing for con-
traction hierarchies. In Proceedings of the 5th ACM SIGSPA-
TIAL International Workshop on Computational Trans-
portation Science, 33–38. ACM.
Storandt, S. 2013. Contraction hierarchies on grid graphs. In
KI 2013: Advances in Artificial Intelligence. Springer. 236–
247.
Tao, Y.; Sheng, C.; and Pei, J. 2011. On k-skip shortest
paths. In Proceedings of the 2011 ACM SIGMOD Interna-
tional Conference on Management of data, 421–432. ACM.
Vapnik, V. N., and Chervonenkis, A. Y. 2015. On the uni-
form convergence of relative frequencies of events to their
probabilities. In Measures of Complexity. Springer. 11–30.
White, C. 2015. Lower bounds in the preprocessing and
query phases of routing algorithms. In Proc. 23rd Annual
European Symposium on Algorithms (ESA), 1013–1024.

6126

