2018

Conference Articles

  1. Lukas Fleischer and Manfred Kufleitner
    The Intersection Problem for Finite Monoids
    STACS 2018, Proceedings, LIPIcs, pages 31:1–31:13. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018.

2017

Journal Articles

  1. Lukas Fleischer , Manfred Kufleitner and Alexander Lauser
    The Half-Levels of the FO2 Alternation Hierarchy
    Theory Comput. Syst.. 61(2):352–370. Springer, 2017.
    DOI

Conference Articles

  1. Volker Diekert and Lukas Fleischer
    Church-Rosser Systems, Codes with Bounded Synchronization Delay and Local Rees Extensions
    WORDS 2017, Proceedings, volume 10432 of LNCS, pages 6–16. Springer, 2017.
    DOI
  2. Lukas Fleischer and Manfred Kufleitner
    Green’s Relations in Finite Transformation Semigroups
    CSR 2017, Proceedings, volume 10304 of LNCS, pages 112–125. Springer, 2017.
    DOI

2016

Conference Articles

  1. Lukas Fleischer and Manfred Kufleitner
    Operations on Weakly Recognizing Morphisms
    DCFS 2016, Proceedings, volume 9777 of LNCS, pages 126–137. Springer, 2016.
    DOI

2015

Conference Articles

  1. Lukas Fleischer and Manfred Kufleitner
    Efficient Algorithms for Morphisms over Omega-Regular Languages
    FSTTCS 2015, Proceedings, volume 45 of LIPIcs, pages 112–124. Dagstuhl Publishing, 2015.
    DOI

2014

Conference Articles

  1. Lukas Fleischer , Manfred Kufleitner and Alexander Lauser
    Block Products and Nesting Negations in \text{FO}^2 \text{FO}^2
    CSR 2014, Proceedings, volume 8476 of LNCS, pages 176–189. Springer, 2014.
    DOI

News

[Dec’17] The paper “The Intersection Problem for Finite Monoids” by Lukas Fleischer and Manfred Kufleitner was accepted at STACS 2018.

[Jun’17] At the 12th International Computer Science Symposium in Russia (CSR), Lukas Fleischer and Manfred Kufleitner received a Best Paper Award for their publication “Green’s Relations in Finite Transformation Semigroups”, and Armin Weiss received a Best Paper Award for “The conjugacy problem in free solvable groups and wreath product of abelian groups is in $\text{TC}^0$ \text{TC}^0 “ which is joint work with Alexei Miasnikov and Svetla Vassileva.